Extension of a theorem on super-multiplicative functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1979 J. Phys. A: Math. Gen. 12 L245
(http://iopscience.iop.org/0305-4470/12/10/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 19:03

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Extension of a theorem on super-multiplicative functions

J B Wilker and S G Whittington
University of Toronto, Toronto, Ontario, Canada

Received 5 July 1979

Abstract

This letter concerns a generalisation of the fundamental theorem on supermultiplicative functions for which the super-multiplicative inequality is replaced by $a_{n+m} \geqslant$ $a_{n} a_{f(m)}$ with $\lim _{m \rightarrow \infty} m^{-1} f(m)=1$.

A number of rigorous results concerning the limiting behaviour of the numbers of self-avoiding walks (Hammersley and Morton 1954), self-avoiding polygons (Hammersley 1961) and lattice animals (Klarner 1967) have been obtained by using properties of super-multiplicative and sub-multiplicative functions. The standard theorem on super-multiplicative functions (Hille 1948) is as follows: If a_{n} is a sequence of positive numbers such that $a_{n}^{1 / n}$ is bounded above and

$$
\begin{equation*}
a_{n} a_{m} \leqslant a_{n+m} \tag{1}
\end{equation*}
$$

then there exists a positive constant μ such that

$$
\begin{equation*}
\sup _{n>0} n^{-1} \log a_{n}=\lim _{n \rightarrow \infty} n^{-1} \log a_{n} \equiv \log \mu<\infty . \tag{2}
\end{equation*}
$$

(The corresponding theorem on sub-multiplicative functions can be obtained by setting $b_{n}=1 / a_{n}$ in the above statement.) Hammersley (1962) has considered a generalization of this theorem in which (1) is replaced by

$$
\begin{equation*}
a_{n+m} \geqslant g_{n+m} a_{n} a_{m} \tag{3}
\end{equation*}
$$

and has examined the conditions on g_{n} for which $a_{n}^{1 / n}$ tends to a finite limit. (An example which is of interest in terms of applications of these results is when g_{n} is a positive constant, $g_{n}=g$, for which the substitution $c_{n}=g a_{n}$ leads immediately to (2).)

A second generalisation which we consider here is when (1) is replaced by

$$
\begin{equation*}
a_{n} a_{m} \leqslant a_{n+f(m)} . \tag{4}
\end{equation*}
$$

The question of interest is: for what class of functions $f(m)$ does $a_{n}^{1 / n}$ tend to a finite limit? Our main result is the following theorem:

Theorem 1. Suppose a_{n} is a non-decreasing sequence of positive numbers such that $n^{-1} \log a_{n}$ is bounded above and $a_{n} a_{m} \leqslant a_{n+f(m)}$ for some positive function f which satisfies $\lim _{m \rightarrow \infty} m^{-1} f(m)=1$. Then there is a positive constant μ such that the sequence $n^{-1} \log a_{n}$ converges to $\log \mu$ and the sequence a_{n} satisfies $a_{n} \leqslant \mu^{f(n)}$.

Proof. For fixed $m, p-1$ applications of the inequality (4) give

$$
\begin{equation*}
a_{m}^{p} \leqslant a_{m+(p-1) f(m)}, \tag{5}
\end{equation*}
$$

which, coupled with the fact that a_{n} is non-decreasing, gives

$$
\begin{equation*}
a_{m}^{p} \leqslant a_{n} \tag{6}
\end{equation*}
$$

for $n \geqslant m+(p-1) f(m)$. Taking logarithms and dividing by n gives

$$
(m p / n)\left(m^{-1} \log a_{m}\right) \leqslant n^{-1} \log a_{n} .
$$

This inequality is most effective when $m+(p-1) f(m) \leqslant n<m+p f(m)$ and, in this range,

$$
\begin{equation*}
m p / n>(m / f(m))(1-m / n) \tag{7}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{\log a_{n}}{n} \geqslant \frac{m}{f(m)}\left(1-\frac{m}{n}\right) \frac{\log a_{m}}{m} . \tag{8}
\end{equation*}
$$

Since $n^{-1} \log a_{n}$ is bounded above, we can define μ by

$$
\begin{equation*}
\log \mu=\lim _{n \rightarrow \infty} \sup n^{-1} \log a_{n}<\infty \tag{9}
\end{equation*}
$$

For a given $\epsilon>0$ there exists an infinite set of numbers $S(\epsilon)$ such that

$$
\begin{equation*}
m^{-1} \log a_{m} \geqslant \log \mu-\epsilon / 3, \quad m \in S(\epsilon) \tag{10}
\end{equation*}
$$

and we can choose a particular $m_{0} \in S(\epsilon)$ with $m_{0} / f\left(m_{0}\right)$ sufficiently close to unity that

$$
\begin{equation*}
\left(m_{0} / f\left(m_{0}\right)\right)(\log \mu-\epsilon / 3) \geqslant \log \mu-\epsilon / 2 \tag{11}
\end{equation*}
$$

Now choose n_{0} sufficiently large so that

$$
\begin{equation*}
\left(1-m_{0} / n\right)(\log \mu-\epsilon / 2) \geqslant \log \mu-\epsilon \tag{12}
\end{equation*}
$$

is satisfied for all $n \geqslant n_{0} \geqslant m_{0}$. Then for $n \geqslant n_{0}(\epsilon)$

$$
\begin{equation*}
n^{-1} \log a_{n} \geqslant \log \mu-\epsilon, \tag{13}
\end{equation*}
$$

and letting $\epsilon \rightarrow 0+$, (9) and (13) imply that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log a_{n}=\log \mu<\infty \tag{14}
\end{equation*}
$$

Now that the existence of the limit is established, let $n \rightarrow \infty$ in (8), giving

$$
\begin{equation*}
a_{m} \leqslant \mu^{f(m)}, \quad \forall m \tag{15}
\end{equation*}
$$

As one would anticipate, there is a corresponding theorem for the case in which the inequality is reversed which we state as:

Theorem 2. Suppose b_{n} is a non-decreasing sequence of positive numbers with the property that $b_{n} b_{m} \geqslant b_{n+f(m)}$ for some positive function f which satisfies $\lim _{m \rightarrow \infty} f(m) / m=1$. Then there is a positive constant μ such that the sequence $n^{-1} \log b_{n}$ converges to $\log \mu$ and the sequence b_{n} satisfies $b_{n} \geqslant \mu^{f(n)}$.

Proof. The proof of this theorem follows the same lines as that of theorem 1, and we sketch only the minor differences involved. For fixed $m, p+1$ repeated applications of
the inequality give

$$
\begin{equation*}
\frac{m(p+2)}{n} \frac{\log b_{m}}{m} \geqslant \frac{\log b_{n}}{n} \tag{16}
\end{equation*}
$$

and choosing p such that

$$
\begin{equation*}
m+p f(m)<n \leqslant m+(p+1) f(m) \tag{17}
\end{equation*}
$$

leads to

$$
\begin{equation*}
\frac{m}{f(m)}\left(1+\frac{2 f(m)-m}{n}\right) \frac{\log b_{m}}{m} \geqslant \frac{\log b_{n}}{n} \tag{18}
\end{equation*}
$$

for $n>m$. Since the sequence b_{n} is non-decreasing and $b_{n}>0$, we can define

$$
\lim _{n \rightarrow \infty} \inf n^{-1} \log b_{n}=\log \mu
$$

and the inequality (18) can then be used to show that, for n sufficiently large, $n^{-1} \log b_{n} \leqslant \log \mu+\epsilon$, for arbitrary $\epsilon>0$. Letting $n \rightarrow \infty$ in (18) then gives $b_{m} \geqslant \mu^{f(m)}$.

One immediate application of these theorems is to some problems in lattice statistics involving section graphs of the lattice, which will be discussed elsewhere. In other applications the conditions of the theorems may be satisfied for n or m sufficiently large. The conclusions of the theorems will still hold in these circumstances.

This work was financially supported by the Natural Sciences and Engineering Council of Canada.

References

Hammersley J M 1961 Proc. Camb. Phil. Soc. 57 516-23

- 1962 Proc. Camb. Phil. Soc. 58 235-8

Hammersley J M and Morton K W 1954 J. R. Stat. Soc. B 16 23-38
Hille E 1948 Functional Analysis and Semi-Groups, Am. Math. Soc. Colloq. Publ. No. 31 (New York: American Mathematical Society)
Klarner D A 1967 Can. J. Math. 19 851-63

